Received 7 November 2005 Accepted 25 November 2005

Online 3 December 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ai-Li Xie,^{a,b} Chun-An Ma^b* and Lian-Bang Wang^b

^aDepartment of Chemistry, Shangrao Normal College, Shangrao 334001, People's Republic of China, and ^bState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical, Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 320014, People's Republic of China

Correspondence e-mail: science@zjut.edu.cn, srsyxieaili@163.com

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (Ni–O) = 0.002 Å R factor = 0.024 wR factor = 0.060 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diammonium bis[hexaaquanickel(II)] decavanadate tetrahydrate, $(NH_4)_2[Ni(H_2O)_6]_2V_{10}O_{28}\cdot 4H_2O$

The crystal structure of the title compound, $(NH_4)_2[Ni-(H_2O)_6]_2V_{10}O_{28}\cdot 4H_2O$, comprises centrosymmetric $[V_{10}O_{28}]^{6-}$ anions that are linked *via* hydrogen bonding by two NH_4^+ cations, two $[Ni(H_2O)_6]^{2+}$ cations, and four water molecules into a three-dimensional structure. The compound is isotypic with other members of the $[M(H_2O)_6]_2^ (NH_4)_2V_{10}O_{28}\cdot 4H_2O$ series (M = Mg and Co).

Comment

Recently, decavanadate double salts of nickel and alkali metals have been reported, *viz*. $[Ni(H_2O)_6]_2[Na(H_2O)_3]_2$ - $[V_{10}O_{28}]\cdot 4H_2O$ (Higami *et al.*, 2002), NiNa₄ $[HV_{10}O_{28}]\cdot 23H_2O$ (Sun *et al.*, 2002) and $[K(H_2O)_2Ni(H_2O)_6]_2[V_{10}O_{28}]$ (Li *et al.*, 2004). However, no double salt with nickel and ammonium has been reported up to now. We present here the crystal structure of the decavanadate $[Ni(H_2O)_6]_2(NH_4)_2V_{10}O_{28}\cdot 4H_2O$, (I), which is isotypic with other members of the series $[M(H_2O)_6]_2(NH_4)_2V_{10}O_{28}\cdot 4H_2O$ where M = Mg (Avtamonova *et al.*, 1990) and Co (Baudrin *et al.*, 1997).

The structure of (I) consists of a centrosymmetric polyanion, $[V_{10}O_{28}]^{6-}$, two hexaaquanickel(II) cations, $[Ni(H_2O)_6]^{2+}$, two ammonium cations, NH_4^+ , and four water molecules as single building units (Fig. 1). Each building unit is bonded to another unit *via* an extensive net of hydrogen bonds into a three-dimensional network. In this way, the $[Ni(H_2O)_6]^{2+}$ cation is linked to the decavanadate polyanion

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved and to an isolated water molecule, whereas the NH₄⁺ group is connected to another water molecule and to the polyanion, so that all terminal O atoms of the $[V_{10}O_{28}]^{6-}$ anion are involved in hydrogen bonding (Fig. 2 and Table 2). The deviation from ideal values of the bonding angles in the water molecules of 118° for both H19A-O19-H19B and H20A-O20-H20B, and in the ammonium cation of 99 and 116°, is also explained by involvement in hydrogen bonding.

The Ni²⁺ cation in (I) is coordinated by six water molecules, forming a slightly distorted octahedron (Table 1) with the *cis*-O–Ni–O angles deviating by about 5° and the *trans*-O–Ni–O angles by about 7° from ideal values.

The decavanadate polyanion in (I) is composed of ten VO_6 octahedra by edge- and corner-sharing. The arrangement of O and V atoms is very close to that in other decavanadates of composition $Li_6(H_2O)_{16}V_{10}O_{28}$ (Xie & Ma, 2005) and $[LiNa_2(H_2O)_9]_2V_{10}O_{28}$ (Ma et al., 2005) reported previously. The $V \cdots V$ contacts within the polyanion in (I) range from 3.0537 (14) to 3.1155 (8) Å. The V-O bond-length distribution is correlated with the coordination number (CN) of the O atoms. Terminal O atoms with only one V-O bond have distances in the range 1.5985 (9) to 1.6136 (18) Å, whereas the other V-O distances increase with higher CN of the bridging O atoms. V $-\mu_2$ -O distances are in the range 1.6840 (19) to 2.0214 (19) Å, V $-\mu_3$ -O distances are 1.9069 (17)-1.9965 (18) Å, and V $-\mu_6$ -O distances are 2.1057 (19)– 2.3410 (19) Å. The bond lengths and angles of the $[V_{10}O_{28}]^{6-1}$ polyanion are very similar to those observed in other decavanadates (Kamenar et al., 1996; Choi et al., 2003; Xie & Ma, 2005; Ma et al., 2005).

Experimental

A mixture of NH_4VO_3 (Shanghai Chemical Reagents) and $Ni(OAc)_2 \cdot 4H_2O$ (Shanghai Chemical Reagents) in a 5:1 molar ratio was acidified to pH 5 and hydrothermally treated for 10 h at 398 K. The resulting filtrate was kept at room temperature and after some days a yellow polycrystalline powder precipitated from the solution which was subsequently filtered off. Yellow single crystals of (I) of up to 3 mm in length and of mostly block-like habit formed after 20 d from this solution.

Crystal data

$\begin{array}{l} (\mathrm{NH}_{4})_{2}[\mathrm{Ni}(\mathrm{H}_{2}\mathrm{O})_{6}]_{2}\mathrm{V}_{10}\mathrm{O}_{28}\cdot4\mathrm{H}_{2}\mathrm{O}\\ M_{r}=1399.12\\ \mathrm{Triclinic},\ P\overline{1}\\ a=8.7728\ (18)\ \mathrm{\mathring{A}}\\ b=10.923\ (2)\ \mathrm{\mathring{A}}\\ c=11.114\ (2)\ \mathrm{\mathring{A}}\\ \alpha=65.18\ (3)^{\circ} \end{array}$	Z = 1 $D_x = 2.588 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 7874 reflections $\theta = 3.4-27.5^{\circ}$ $\mu = 3.64 \text{ mm}^{-1}$
$\beta = 73.12 \ (3)^{\circ}$ $\gamma = 70.64 \ (3)^{\circ}$	T = 173 (2) K Block vellow
$V = 897.6 (4) Å^3$	$0.20 \times 0.20 \times 0.20$ mm
Data collection	
Rigaku R-AXIS RAPID diffractometer ω scans	4056 independent reflections 3602 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ 0.0275°
(ABSCOR; Higashi, 1995)	$b_{\text{max}} = 27.5$ $h = -11 \rightarrow 11$

 $k = -14 \rightarrow 14$

 $l = -14 \rightarrow 12$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0185P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.024$	+ 1.7228P]
$wR(F^2) = 0.060$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
4056 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
262 parameters	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ \AA}^{-3}$
H atoms not located	

Table 1		
Selected	bond lengths	(Å)

Ni-O15	2.047 (2)	V3-O3	1.5985 (19)
Ni-O19	2.054 (2)	V3-O10	1.8404 (19)
Ni-O17	2.054 (2)	V3-O11	1.8682 (18)
Ni-O16	2.057 (2)	V3-O8 ⁱ	1.8987 (18)
Ni-O18	2.0688 (19)	V3-O12	2.0214 (19)
Ni-O20	2.0848 (19)	V3-O13 ⁱ	2.3410 (19)
V1-O1	1.6054 (19)	V4-O4	1.6840 (19)
V1-O10	1.8303 (19)	V4-O12	1.7027 (19)
V1-O9	1.8407 (18)	V4-O14	1.9069 (17)
V1-O5 ⁱ	1.8982 (18)	V4-O6	1.9442 (18)
$V1-O4^{i}$	2.061 (2)	V4-O13	2.1057 (19)
V1-013 ⁱ	2.3093 (19)	V4-013 ⁱ	2.1180 (18)
V2-O2	1.6136 (18)	V5-O7	1.6112 (18)
V2-O9	1.8276 (18)	V5-O5	1.8179 (18)
V2-011	1.8291 (18)	V5-O8	1.8337 (19)
V2-O14	1.9825 (19)	V5-O14	1.9965 (18)
$V2-O6^{i}$	1.9997 (19)	$V5-O6^{i}$	1.9979 (19)
V2-O13 ⁱ	2.2282 (18)	V5-O13	2.2328 (18)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O15−H15A···O21 ⁱⁱ	0.89	2.17	3.035 (3)	165
$O15-H15B\cdots O2^{ii}$	0.94	2.31	3.050 (3)	135
$O15-H15B\cdots O14^{ii}$	0.94	2.43	3.300 (3)	154
O16-H16A···O22	0.90	1.95	2.819 (3)	164
$O16-H16B\cdots O6^{i}$	0.92	1.81	2.731 (2)	175
$O17-H17A\cdots O12^{i}$	0.87	1.98	2.847 (3)	172
$O17-H17B\cdots O5^{ii}$	0.90	1.95	2.830 (2)	167
$O17 - H17B \cdot \cdot \cdot O4^{ii}$	0.90	2.51	3.083 (6)	122
$O18-H18A\cdots O8^{iii}$	0.85	1.88	2.726 (1)	177
O18−H18B···O8	0.86	1.95	2.794 (3)	165
O19−H19A···O5 ⁱⁱⁱ	0.87	1.81	2.671 (3)	176
$O19-H19B\cdots O7^{ii}$	0.85	2.14	2.951 (3)	161
$O20-H20A\cdots O10^{iv}$	0.82	1.93	2.746 (3)	173
$O21 - H21A \cdots O3^{v}$	0.86	2.22	3.030 (3)	159
$O21 - H21B \cdot \cdot \cdot O1^{vi}$	0.85	2.03	2.869 (3)	169
$O22-H22A\cdots O11^{ii}$	0.85	2.11	2.948 (3)	173
$O22-H22B\cdots O4^{i}$	0.93	2.12	2.928 (3)	144
$N-H23A\cdots O2$	0.99	1.97	2.957 (3)	174
$N-H23B\cdots O21$	0.98	1.89	2.831 (3)	162
N−H23C···O18	0.99	2.22	3.195 (3)	170
$N-H23C \cdot \cdot \cdot O20$	0.99	2.48	3.044 (3)	116
Symmetry codes:	(i) $-x + 1$,	-y + 1, -z +	1; (ii) x +	1, y, z; (iii)

Symmetry codes: (1) -x + 1, -y + 1, -z + 1; (11) x + 1, y, z; (11) -x + 1, -y + 1, -z + 2; (iv) x, y, z + 1; (v) -x, -y + 2, -z + 1; (vi) x - 1, y, z + 1.

All H atoms were found in a difference Fourier map. They were fixed in these positions, with $U_{iso}(H) = 0.05 \text{ Å}^2$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO* (Rigaku, 2002); data reduction: Crystal Structure (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3*

 $T_{\min} = 0.471, T_{\max} = 0.483$

8845 measured reflections

(Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The work at Hangzhou was supported by the National Science Foundation (grant No. 20476097) and the Major State Basic Research Development Program of China (973 Program (grant No. 2003CCA01300).

References

- Avtamonova, N. V., Trunov, V. K. & Makarevich, L. G. (1990). Iz. Akad. Nauk. Neorg. Mater. 26, 350–356. (In Russian.)
- Baudrin, E., Denis, S., Touboul, M. & Nowogrocki, G. (1997). Eur. J. Solid State Inorg. Chem. 34, 1011–1026.
- Choi, H., & Chang, Y. Y. (2003). Chem. Mater. 15, 3261-3267.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Higami, T., Hashimoto, M. & Okeye, S. (2002). Acta Cryst. C58, i144-i146.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kamenar, B., Clndric, M. & Strukan, N. (1996). Acta Cryst. C52, 1338–1341.
- Li, D. H., Liu, S. X., Peng, J., Shao, K. Z., Xu, H. B., Zhai, H. J. & Wang, E. B. (2004). *Chin. J. Inorg. Chem.* **20**, 1076–1080.
- Ma, C.-A., Xie, A.-L. & Wang, L. B. (2005). Acta Cryst. E61, i185-i187.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Rigaku (2002). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands TX 77381-5209, USA.

Figure 2

The structure of (I), viewed approximately perpendicular to the bc plane. Part of the hydrogen-bonding network is shown as dashed lines. [Symmetry code: (i) x - 1, y, z.]

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Sun, Z.-G., Long, L.-S., Ren, Y.-P., Huang, R.-B. & Zheng, L.-S. (2002). Acta Cryst. E58, i34–i36.
- Xie, A.-L. & Ma, C.-A. (2005). Acta Cryst. C61, i67-i68.